SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface Programmable multi-transducer

for the measurement of electrical variables in heavycurrent power system

Application

SINEAX DME 400 (Fig. 1) is a programmable transducer with a LONWorks ${ }^{\circledR}$ Interface that simultaneously measures several variables of a heavy-current power system.
The device conforms to the LonMark ${ }^{\circledR}$ interoperability guidelines, Version 3.0. The measured variables are transferred by means of standard network variable types (SNVT) and are available at the LON interface.
The device is programmed using the LonTALK ${ }^{\circledR}$ file transfer protocol. The transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.
The usual methods of connection, the rated values of the input variables and the type of internal power metering are the main parameters that can be programmed.
The ancillary functions include a power system check, a facility for printing rating labels and provision for reading and setting the power meter.
The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility (EMC) and safety (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features / Benefits

- Transfer of data via a LON interface with an FTT-10A transceiver and LONTAL ${ }^{\ominus}$ protocol
- Simultaneous measurement of several variables of a heavy-current power system / full supervision of an asymmetrically loaded four-wire power system, rated current 1 to 6 A , rated voltage 57 to 400 (phase-to-neutral) or 100 to 693 V (phase-to-phase)

Measured variables	Output	Types
Current, voltage (rms), active/reactive/apparent power $\cos \varphi, \sin \varphi$, power factor RMS value of the current with wire setting range (bimetal measuring function) Slave pointer function for the measurement of the RMS value IB Frequency Average value of the currents with sign of the active power (power system only)	Data bus LON	DME 400
	2 analogue outputs and 4 digital outputs or 4 analogue outputs and 2 digital outputs see Data Sheet DME 424/442-1 Le	DME 424 DME 442
	4 analogue outputs and bus RS 485 (MODBUS) see Data Sheet DME 440-1 Le	DME 440

- For all heavy-current power systems variables

Fig. 1. SINEAX DME 400 in housing T24, clipped onto a top-hat rail.

- Input voltage up to 693 V (phase-to-phase)
- High accuracy: U/I/P 0.2% (under reference conditions)
- Up to 4 integrated power meters, storage every each 203 s , storage for: 20 years
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings
- $A C / D C$ power supply / universal
- Provision for either snapping the transducer onto top-hat rails or securing it with screws to a wall or panel

1 = Input transformer
2 = Multiplexer
3 = Latching stage
4 = A/D and D/A converter
$5=$ Microprocessor
6 = Programming interface RS-232 (electrically insulated)
7 = Power supply
$8=$ NEURON ${ }^{\circledR}$ Chip
9 = FTT-10
$10=$ Service pin
Fig. 2. Block diagram.

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface
 Programmable multi-transducer

Symbols

Symbols	Meaning
X	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
U	Input voltage
Ur	Rated value of the input voltage
U 12	Phase-to-phase voltage $L 1-L 2$
U 23	Phase-to-phase voltage L2 - L3
U 31	Phase-to-phase voltage L3 - L1
U1N	Phase-to-neutral voltage $\mathrm{L} 1-\mathrm{N}$
U2N	Phase-to-neutral voltage L2-N
U3N	Phase-to-neutral voltage $\mathrm{L} 3-\mathrm{N}$
UM	Average value of the voltages (U1N + U2N + U3N) / 3
I	Input current
11	AC current L1
12	AC current L2
13	AC current L3
Ir	Rated value of the input current
IM	Average value of the currents ($11+12+13$) / 3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
BS	Slave pointer function for the measurement of the RMS value IB
φ	Phase-shift between current and voltage
F	Frequency of the input variable
P	Active power of the system $\mathrm{P}=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$
P1	Active power phase 1 (phase-to-neutral L1 - N)
P2	Active power phase 2 (phase-to-neutral L2 - N)

Symbols	Meaning	
P3	Active power phase 3 (phase-to-neutral L3-N)	
Q	Reactive power of the system $\mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3$	
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	
Q3	Reactive power phase 3 (phase-to-neutral L3-N)	
S	Apparent power of the system $S=\sqrt{I_{1}{ }^{2}+I_{2}{ }^{2}+I_{3}^{2}} \cdot \sqrt{U_{1}^{2}+U_{2}{ }^{2}+U_{3}{ }^{2}}$	
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	
S3	Apparent power phase 3 (phase-to-neutral L3-N)	
Sr	Rated value of the apparent power of the system	
PF	Active power factor $\cos \varphi=\mathrm{P} / \mathrm{S}$	
PF1	Active power factor phase $1 \mathrm{P} 1 / \mathrm{S} 1$	
PF2	Active power factor phase $2 \mathrm{P} 2 / \mathrm{S} 2$	
PF3	Active power factor phase 3 P3/S3	
QF	Reactive power factor $\sin \varphi=\mathrm{Q} / \mathrm{S}$	
QF1	Reactive power factor phase 1 Q1/S1	
QF2	Reactive power factor phase 2 Q2/S2	
QF3	Reactive power factor phase 3 Q3/S3	
LF	Power factor of the system $L F=\operatorname{sgn} Q \cdot(1-\|P F\|)$	
LF1	Power factor phase 1 sgnQ1 • (1-\|PF1)
LF2	Power factor phase 2 sgnQ2 • (1-\|PF2)
LF3	Power factor phase 3 sgnQ3 • (1 - \|PF3)
H	Power supply	
Hn	Rated value of the power supply	

Applicable standards and regulations

DIN En 60688	Electrical measuring transducers for converting AC electrical variables into analogue and digital signals
IEC 1010 or	
EN 61010	Safety regulations for electrical measuring, control and laboratory equipment
EN 60529	Protection types by case (code IP)
IEC 255-4 Part E5	High-frequency interference test (solidstate relays only)
IEC 1000-4-2, 3, 4, 6	Electromagnetic compatibility for industrialprocess measurement and control equipment
VDI/VDE 3540, page 2	Reliability of measuring and control equipment (classification of climates)
DIN 40110	AC quantities
DIN 43807	Terminal markings
IEC 68 /2-6	Basic environmental testing procedures, vibration, sinusoidal
EN 55011	Electromagnetic compatibility of data processing and telecommunication equipment Limits and measuring principles for radio interference and information equipment
IEC 1036	Solid state AC watt hour meters for active power (Classes 1 and 2)
DIN 43864	Current interface for the transmission of impulses between impulse encoder counter and tarif meter
UL 94	Tests for flammability of plastic materials for parts in devices and appliances
LonMark ${ }^{\text {® }}$	Interoperability guidelines, Version 3.0

Technical data

Inputs Θ

Input variables:
Measuring ranges:
Waveform:
Rated frequency:
Consumption:
see Tables 3 and 4
see Tables 3 and 4
Sinusoidal
$50 . . .60 \mathrm{~Hz} ; 162 / 3 \mathrm{~Hz}$
Voltage circuit: $\leq \mathrm{U}^{2} / 400 \mathrm{k} \Omega$ Condition:
Characteristic XH01 ... XH10
Current circuit: $\leq 0.3 \mathrm{VA} \cdot \mathrm{I} / 5 \mathrm{~A}$

Continuous thermal ratings of inputs

Current circuit	10 A 400 V single-phase AC system 693 V three-phase system
Voltage circuit	480 V single-phase AC system 831 V three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit	400 V single-phase AC system 693 V three-phase system		
100 A	5	3 s	5 min .
250 A	1	1 s	1 hour
Voltage circuit	$1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$		
Single-phase AC system 600 V $\mathrm{H}_{\text {interm }}$: 1.5 Ur	10	10 s	10 s
Three-phase system 1040 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 s

LONWORKS® Interface

Standard program ID:
Network protocol:
Transmission medium:
8000361503040401
LonTalk ${ }^{\circledR}$
Echelon FTT-10A transceiver, transformer coupled, reverse polarity protected, twisted 2 -wire cable

Transmission speed: $\quad 78$ kBit/s
Node within a subnet: 127
Subnet: 255
Number of nodes per network:

Bus termination:
Terminals:
Max. 32'385
External
Screw terminals, terminals 15 and 16

LonWorks ${ }^{\circledR}$, LonTalk ${ }^{\circledR}$ and NEURON ${ }^{\circledR}$ are registered trademarks of the Echelon Corporation.

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface Programmable multi-transducer

Table 1: Standard network variable types (according to application)

Symbols	Meaning	Application (see Table 4)		
		A11 ... A16	A34	A24 / A44
U	Input voltage	-	-	-
U12	Phase-to-phase voltage L1 - L2	-	-	-
U23	Phase-to-phase voltage L2-L3	-	\bullet	\bullet
U31	Phase-to-phase voltage L3 - L1		\bullet	\bullet
U1N	Phase-to-neutral voltage L1-N	-	-	\bullet
U2N	Phase-to-neutral voltage $\mathrm{L} 2-\mathrm{N}$	-	-	\bullet
U3N	Phase-to-neutral voltage $\mathrm{L} 3-\mathrm{N}$	-	-	\bullet
UM	Average value of the voltages	-	-	-
1	Input current	-	-	-
11	AC current L1	-	-	-
12	AC current L2	-	-	-
13	AC current L3	-	\bullet	\bullet
IM	Average value of the currents	-	\bullet	-
IMS	Average value of the currents and sign of the active power	-	-	\bullet
IB	RMS value of the current with wire setting range (bimetal measuring function)	\bullet	-	-
IB1	RMS value of the current with wire setting range (bimetal measuring function), phase 1	-	\bullet	\bullet
IB2	RMS value of the current with wire setting range (bimetal measuring function), phase 2	-	-	\bullet
IB3	RMS value of the current with wire setting range (bimetal measuring function), phase 3	-	-	\bullet
BS	Slave pointer function for the measurement of the RMS value IB	\bullet	-	-
BS1	Slave pointer function for the measurement of the RMS value IB, phase 1	-	\bullet	\bullet
BS2	Slave pointer function for the measurement of the RMS value IB, phase 2	-	\bullet	\bullet
BS3	Slave pointer function for the measurement of the RMS value IB, phase 3	-	\bullet	\bullet
F	Frequency of the input variable	\bullet	\bullet	-
P	Active power of the system	\bullet	\bullet	\bullet
P1	Active power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet

Continuation of Table 1:

Symbols	Meaning	Application (see Table 4)		
		A11 ... A16	A34	A24 / A44
P2	Active power phase 2 (phase-to-neutral L2 - N)	-	-	-
P3	Active power phase 3 (phase-to-neutral L3-N)	-	-	\bullet
PF	Active power factor $\cos \varphi=P / S$	\bullet	\bullet	\bullet
PF1	Active power factor phase 1, P1/S1	-	-	\bullet
PF2	Active power factor phase 2, P2/S2	-	-	\bullet
PF3	Active power factor phase 3, P3/S3	-	-	\bullet
Q	Reactive power of the system	\bullet	\bullet	\bullet
Q1	Reactive power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet
Q2	Reactive power phase 2 (phase-to-neutral L2 - N)	-	-	\bullet
Q3	Reactive power phase 3 (phase-to-neutral L3 - N)	-	-	\bullet
S	Apparent power of the system	\bullet	\bullet	\bullet
S1	Apparent power phase 1 (phase-to-neutral L1 - N)	-	-	\bullet
S2	Apparent power phase 2 (phase-to-neutral L2 - N)	-	-	\bullet
S3	Apparent power phase 3 (phase-to-neutral L3-N)	-	-	\bullet
LF	Power factor of the system	\bullet	\bullet	\bullet
LF1	Power factor phase 1	-	-	\bullet
LF2	Power factor phase 2	-	-	\bullet
LF3	Power factor phase 3	-	-	-
QF	Reactive power factor $\sin \varphi=Q / S$	-	-	-
QF1	Reactive power factor phase 1, Q1/S1	-	-	\bullet
QF2	Reactive power factor phase 2, Q2/S2	-	-	\bullet
QF3	Reactive power factor phase 3, Q3/S3	-	-	-
EA	Power meter 1	\bullet	\bullet	\bullet
EB	Power meter 2	-	\bullet	\bullet
EC	Power meter 3	-	-	-
ED	Power meter 4	\bullet	\bullet	\bullet

Where c.t's and/or v.t's are used for measurement, the values are referred to the primaries of the transformers.

Variables

- Power meter reset
- Maximum value pointer reset

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface
 Programmable multi-transducer

Reference conditions	
Ambient temperature:	$+23^{\circ} \mathrm{C} \pm 1 \mathrm{~K}$
Input variable:	Rated useful range
Power supply:	$\mathrm{H}=\mathrm{Hn} \pm 1 \%$
Active/reactive factor:	$\cos \varphi=1$ resp. $\sin \varphi=1$
Frequency:	$50 \ldots 60 \mathrm{~Hz}, 162 / 3 \mathrm{~Hz}$
Waveform:	Sinusoidal, form factor 1.1107
Miscellaneous:	DIN EN 60688

System response

Accuracy class:

Duration of the measurement cycle:

Response time:

Influencing quantities and permissible variations

Acc. to DIN IEC 688

Safety

Protection class: ||
Enclosure protection: IP 40, housing
IP 20, terminals
Overvoltage category:
Insulation test:

Surge test:
Test voltages:

Power supply $\rightarrow \bigcirc$

AC voltage:
100, 110, 230, 400, 500 or 693 V , $\pm 10 \%, 45$ to 65 Hz
Power consumption approx. 10 VA
AC/DC power pack (DC and $50 \ldots 60 \mathrm{~Hz}$)
Table 2: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{VDC} / \mathrm{AC}$	$\mathrm{DC}-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC/AC	$\mathrm{AC} \pm 10 \%$

Consumption:
$\leq 9 \mathrm{~W}$ resp. $\leq 10 \mathrm{VA}$

Programming connector on transducer

Interface:
DSUB socket:

Installation data
Housing:

Housing material:

Mounting:

Orientation:
Weight:

Terminals

Type:
Max. wire gauge:

Vibration withstand

(tested according to DIN EN 60 068-2-6)
Acceleration:
Frequency range:

Number of cycles:

Housing T24

See Section "Dimensioned drawings"
Lexan 940 (polycarbonate),
flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen
For snapping onto top-hat rail $(35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022
or
directly onto a wall or panel using the pull-out screw hole brackets
Any
With supply transformer approx. 1.1 kg With AC/DC power pack approx. 0.7 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm}^{2}$ single wire or
$2 \times 2,5 \mathrm{~mm}^{2}$ fine wire
as well as outer surface
3250 V, input circuits versus each other

3700 V, power supply versus outputs and SCl as well as outer surface

490 V, outputs and SCl versus each other and versus outer surface

5 kV; 1,2/50 $\mu \mathrm{s} ; 0,5 \mathrm{Ws}$
$50 \mathrm{~Hz}, 1$ min. according to DIN EN 61 010-1
5550 V, inputs versus all other circuits and
$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep: 1 octave/minute
10 in each of the three axes

Ambient conditions

Climatic rating:

No faults occurred, no loss of accuracy and no problems with the snap fastener

Climate class 3 acc. to VDINDE 3540

Variations due to ambient
temperature: $\quad \pm 0.1 \% / 10 \mathrm{~K}$
Nominal range of use for temperature:

Storage temperature:
Annual mean relative humidity: $\leq 75 \%$

Basic programming

A version of the SINEAX DME 400 transducer with a basic program is also available which is recommended if the programming
data are unknown at the time of ordering (see "Table 3: Ordering information», Feature 6).

Basic programming	Marking	
Appllication:	4-wire, 3-phase system, asymmetric load (NPS)	A 44
Input voltage:	Design value $\mathrm{Ur}=100 \mathrm{~V}$	U 21
Input current:	Design value Ir $=2$ A	V 2
	without specification of primary rating	W 0
Power meter 1:	P System (incoming)	EA 58
Power meter 2:	Q System (inductive)	FA 62
Power meter 3:	P1 L1 (incoming)	GA 59
Power meter 4:	I1 L1	HA 51

Table 3: Ordering information

DESCRIPTION	MARKING
1. Mechanical design	
Housing T24 for rail and wall mounting	400-1
2. Rated frequency	
1) $50 \mathrm{~Hz}(60 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error $1.25 \cdot \mathrm{c}$)	1
2) $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error $1.25 \cdot \mathrm{c}$)	2
3) $162 / 3 \mathrm{~Hz}$ (not re-programming by user, $50 / 60 \mathrm{~Hz}$ possible, but with additional error $1.25 \cdot$ c)	3
3. Power supply	
Nominal range	
1) AC , $90 \ldots 110 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=100 \mathrm{~V}$	1
2) $\mathrm{AC} \quad 99 \ldots 121 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=110 \mathrm{~V}$	2
3) $\mathrm{AC} 207 \ldots 253 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=230 \mathrm{~V}$	3
4) $\mathrm{AC} 360 \ldots 440 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=400 \mathrm{~V}$	4
5) AC $450 \ldots 550 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=500 \mathrm{~V}$	5
6) $\mathrm{AC} 623 \ldots 762 \mathrm{~V} \quad \mathrm{H}_{\mathrm{n}}=693 \mathrm{~V}$	6
7) DC/AC $20 \ldots 80 \mathrm{~V}$ DC / $22 \ldots 66 \mathrm{~V}$ AC $24 \ldots 60 \mathrm{~V}$	7
8) DC/AC $72 \ldots 306 \mathrm{~V}$ DC / $76 \ldots 253 \mathrm{VAC}$ ($85 \ldots 230 \mathrm{~V}$	8
4. Power supply connection	
1) External (standard)	1
2) Internal from voltage input	2
Line 2: Not available for rated frequency $162 / 3 \mathrm{~Hz}$ and applications A15 / A16 / A24 Caution: The power supply voltage must agree with the input voltage (Table 4)!	

Table 3 continued on next page!

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface Programmable multi-transducer

Continuation "Table 3: Ordering information"

DESCRIPTION	MARKING
5. Test certificate	
0) None supplied	0
1) Supplied	1
6. Programming 0) Basic	
9) According to specification	
Line 0: Not available if the power supply is taken from the voltage input Line 9: the programming data must be entered on Form \mathbf{W} 2388 e and the form must be included with the order, if the primary values of the measured variables or meter readings have to be transferred.	0

Table 4: Programming

* Accuracy class 0.4

Table 4 continued on next page!

Continuation "Table 4: Programming"

Note: The meter reading is referred to the power $P=I \cdot$ Up for I, respectively I1 \cdot Up for I1, I2 \cdot Up for I2 and $13 \cdot$ Up for 13 where Up = the primary rated voltage or the secondary rated voltage if there is no v.t..

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface
 Programmable multi-transducer

Electrical connections

Function			Connection
Meas. input	AC current AC voltage	IL1 IL2 IL3 UL1 UL2 UL3 N	$\begin{gathered} \hline 1 / 3 \\ 4 / 6 \\ 7 / 9 \\ 2 \\ 5 \\ 8 \\ 11 \\ \hline \end{gathered}$
Outputs	Analogue ΘA $\bigcirc B$ ΘC ΘD	$+$ $-$ $+$ $-$ $+$ $-$ $+$ $-$ $+$ $-$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & \hline \end{aligned}$
Power supply AC DC		$\begin{aligned} & \sim \\ & \sim \\ & + \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 13 \\ & 14 \end{aligned}$

If power supply is taken from the measured voltage internal connections are as follow::

Application (system)	Internal connection Terminal / System	
Single phase AC current	$2 / 11$	(L1 - N)
4-wire 3-phase symmetric load	$2 / 11$	(L1 - N)
All other (apart from A15 / A16 / A24)	$2 / 5$	(L1 - L2)

Measuring input

| System
 application |
| :--- | :--- | :--- | :--- |

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface Programmable multi-transducer

Measuring inputs	
System / application	Terminals
4-wire 3-phase asymmetric load	3 single-pole insulated voltage transformers in high-voltage system
4-wire 3-phase asymmetric load, Open Y connection	Low-voltage system 2 single-pole insulated voltage transformers in high-voltage system

Relationship between PF, QF and LF

Fig. 3. Active power PF ——, reactive power QF -------, power factor LF -----.

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface
 Programmable multi-transducer

Dimensioned drawings

Table 5: Accessories

Description	Order No.
Programming cable	980179
PC software DME 4 (in German, English and French on two 3 1/2" discs)	131144
Operating Instructions DME 400-1 Bd-f-e	127119

Fig. 4. SINEAX DME 400 in housing $\mathbf{T} 24$ clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50022).

Fig. 5. SINEAX DME 400 in housing T24, screw hole mounting brackets pulled out.

SINEAX DME 400 with LONWORKS ${ }^{\circledR}$ Interface
 Programmable multi-transducer

